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This paper explores whether the current Canadian legal framework is 
adapted to the challenges that algorithmic pricing may pose. It concludes that 
creative legal solutions should be envisioned to curtail upcoming challenges, 
although the most appropriate solutions may come from regulating the design 
of algorithms.

It first provides an overview of the artificial intelligence at hand, and ratio-
nales that draw businesses to use them. Secondly, this paper asks whether 
there is a real threat that pricing algorithms may enable collusion. Through 
a review of experimental and empirical evidence, it answers that the calls to 
caution are not unwarranted, although the threats may not yet be at the fore-
front. Thirdly, after a review of the legal landscape in Canada, this analysis 
reveals that some actions are needed for regulators to be proactive in the face 
of upcoming challenges, through a study of the different ways in which algo-
rithmic collusion may occur.

Cet article s’interroge sur l’adaptation de l’actuel cadre juridique canadien 
aux défis que les algorithmes de prix peuvent poser. Il y est conclu qu’on fera 
bien d’envisager des solutions juridiques astucieuses pour parer aux prob-
lèmes qui s’annoncent, mais que le mieux sera sans doute de réglementer la 
conception des algorithmes.

L’article commence par une vue d’ensemble de l’intelligence artificielle 
aujourd’hui et des raisons qui poussent les entreprises à y recourir. Ensuite est 
posée la question de savoir si les algorithmes de tarification posent un risque 
réel d’ouvrir la porte à la collusion. Après examen de l’évidence expérimentale 
et empirique, il est établi que les mises en garde ne sont pas sans fondement, 
quoique les risques ne soient possiblement pas encore des plus préoccupants. 
Enfin, après examen du secteur juridique canadien, l’analyse révèle que les 
autorités de réglementation doivent adopter certaines mesures proactives 
pour éviter les problèmes qui s’annoncent, par une étude sur les différentes 
manières dont la collusion algorithmique peut se produire.
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1. Introduction: Setting the Scene

Picture this. You take an Uber ride to attend a concert, and the ride 
costs a certain price. At the end of the show, just like hundreds of 
showgoers, you open the Uber app only to see that the cost for the 

same trip back home has now tripled: this is Uber’s surge pricing, or dynamic 
pricing, in action. Uber uses the practice of surge pricing when the demand 
is higher than the supply of riders, reportedly in the hopes of attracting more 
drivers.1 Uber’s artificial intelligence, its pricing algorithm, detects situations 
of high demands and low supply, and then automatically hikes the price of 
rides according to the shortage.2 While the ethicality and effectiveness of the 
practice is a separate discussion,3 it illustrates the growing resort to dynamic 
pricing by businesses and sellers. 

Dynamic pricing became principally known in the 1990s, when airlines 
started to change their prices constantly, depending for instance on the 
number of seats available per flight or competitors’ prices, in order to maxi-
mize their revenue. This practice of yield management4 soon expanded to 
other industries, such as hotels and sporting events, as it is extremely valu-
able.5 For example, American Airlines, the forerunner of dynamic pricing, 
reportedly gain an additional $500  million per year this way.6 Dynamic 
pricing, which is a type of price discrimination, refers to a set of pricing 
strategies implemented to increase profits and is facilitated by algorithms.7 
Whereas price discrimination focuses on varying prices based on consum-
ers’ individual characteristics and data, dynamic pricing is more focused 
on market data to influence the prices: factors such as stock, competitors’ 
offerings and prices, expiration dates, demand, etc.8 Yet, both practices are 
defined by their volatility in prices; indeed, sellers using these practices may 
change prices multiple times a day.9 

Today, with the boom of e-commerce, dynamic pricing has become 
more widespread and more easily implemented thanks to the availability 
of information and the development of artificial intelligence, specifically 
pricing algorithms.10 Much like the Uber example, an increasing number 
of businesses rely on pricing algorithms, but use ones that focus on react-
ing to other competitors’ pricing. Platforms such as Amazon’s facilitated 
this expansion.11 A study found that out of the merchants selling any of the 
1,641 best-seller products, 500 of them used algorithmic pricing.12 As well, 
the study showed that 60% of the third-party sellers on Amazon that use 
algorithmic pricing charged more than other sellers.13 The European Com-
mission also found that two-thirds of online retailers use pricing tools.14 
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In 2016, it was noted that two competing sellers on Amazon were selling 
the same book for $23.7 million.15 No, it was not a first edition of a Shake-
speare16—but merely a widely available scientific book, The Making of a Fly 
by Peter Lawrence. The jaw-dropping prices were the result of both sellers 
using algorithmic pricing making the prices fly. 

The Kafkaesque price tags shed light on a problem: pricing algorithms 
that react on competitors’ prices, if left unfettered, can interact, and produce 
unexpected outcomes.17 As the use of pricing algorithms becomes more 
prevalent in everyday lives,18 it is important to pause and consider the impli-
cations concerning competition law. 

Competition law, in Canada, has four stated goals: to promote the effi-
ciency and adaptability of the economy; to expand the opportunities of 
Canadians to participate in world markets; to ensure equitable opportu-
nities to smaller businesses; and, to provide consumers with competitive 
prices and product choices.19 Parliament stated that this later goal “is the 
ultimate objective” of competition law.20 All of these objectives—and the 
fourth one in particular—are fundamentally undermined by collusion. Col-
lusion occurs when two or more competitors decide to collaborate in order 
to ultimately suppress rivalry in their market. Generally, they collaborate 
through price-fixing, market allocation, limiting production, or bid-rig-
ging.21 Collusion is condemned by economists and lawmakers alike.22 On 
the one hand, it hurts consumers as it would lead to higher prices. On the 
other, it results in hurting innovation in the market and disincentivizing 
new entrants by acting as a barrier to entry.23

With the evolution of self-learning algorithms, once these are given a goal 
(e.g., to maximize profits for the company), they are able to autonomously 
implement strategies to reach it—even in the absence of explicit instruc-
tions.24 The advent of these technologies and the rise of e-commerce and 
Big Data creates new concerns for competition law. Together, these devel-
opments will test the regulatory side: is the law well equipped to address the 
potential complications?

With that background in my mind, this paper will explore whether the 
current legal framework is adapted to the possible challenges that algorith-
mic pricing can pose, in light of competition law. Specifically, this paper will 
focus on pricing algorithms that respond to competitors’ actions.25 After an 
overview of the artificial intelligence at hand and its uses, this paper will ask 
if we are not crying wolf: that is, is there a real threat that pricing algorithms 
may enable collusion? Based on both experimental and recent empirical 
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evidence, it will answer that yes, although the threats may not yet be at the 
forefront, the calls to caution are not unwarranted as pricing algorithms 
can independently learn to not compete, and therefore reach collusive out-
comes. The third part will examine the legal considerations. After a review 
of the legal landscape in Canada, this analysis will reveal that some actions 
are needed for regulators to be proactive in the face of upcoming challenges, 
through a study of the different ways in which algorithmic collusion may 
occur in light of Canadian law. Finally, this paper will conclude that cre-
ative legal solutions should be envisioned to curtail the upcoming challenges 
while admitting that the most appropriate solutions may come from regu-
lating the design of algorithms themselves.

The Competition Bureau (“Bureau”), the agency invested to enforce the 
Competition Act,26 already recognizes different levels and types of cartel 
behaviours, finding some more egregious than others.27 This paper there-
fore argues that, in the advent of digitalization of pricing, the difficulty with 
which collusions are uncovered can only be reinforced.28 It is then opportune 
to revise legal and policy approaches to prevent proactively the development 
of more opaque forms of collusion, i.e. the sheltering of unlawful behaviour 
and liability from consequences, behind an algorithm.

The present study draws on cases and literature from everywhere, notably 
from the United States and Europe, but focuses on the Canadian perspec-
tive and Canadian laws. The goal is to discuss legal implications and as such, 
only a cursory discussion of the computer science and economic aspects 
are presented. That is, this paper does not aim to criticize nor comment on 
the economics methods of studies presented. Rather, it hopes to use these 
robust studies as catalysts for a legal discussion.  

2. Artificial Intelligence: the What and the Why

Today, artificial intelligence (“AI”) is widely used and deep-seated in our 
societies.29 But what do we actually mean by AI and how does it relate with 
algorithms? 

2.1 The Nomenclature: Defining the Terms

AI is a branch of computer science that refers to the study and design of 
intelligent systems, for the execution of complex, intelligent tasks.30 Machine 
learning is then a subfield of AI that “designs intelligent machines [using] 
algorithms that iteratively learn from data and experience.”31 
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Machine learning uses algorithms which, in a nutshell, are logical and 
sequential rules that generate certain outputs, based on a given input. More 
precisely, they are defined as follows:

An algorithm is an unambiguous, precise, list of simple operations 
applied mechanically and systematically to a set of tokens or objects (e.g., 
configurations of chess pieces, numbers, cake ingredients, etc.). The initial 
state of the tokens is the input; the final state is the output.32

Machine learning algorithms can be grouped into three categories. First, 
there are supervised learning algorithms. These algorithms use a sample of 
labelled data to learn the general rules that map out inputs and outputs. 
Simply put, these algorithms will be able to predict the output once con-
fronted with a new set of inputs.33 Second, unsupervised learning algorithms 
detect structures and patterns in unlabelled sample data, without the associ-
ated outputs.34 Third, reinforcement learning algorithms perform tasks in 
dynamic, complex environments and learn from experience.35

Deep learning is then a subfield of machine learning that is close to 
reinforcement learning algorithms. It is a complex software that tries to 
replicate human neuronal activity through artificial networks. Ultimately, it 
is a complex way for computers to learn faster and more effectively.36 Both 
deep learning and reinforcement learning algorithms are systems that learn 
autonomously; however, the former learns from a training set and applies 
it to a new dataset, and the latter dynamically learns by adjusting its actions 
thanks to feedback.37

2.2 Algorithmic Business 

A phenomenon coined and described extensively by Stucke & Ezrachi,38 
algorithmic business refers to the “industrialized use of complex mathemat-
ical algorithms pivotal to driving improved business decisions or process 
automation for competitive differentiation.”39 The use of algorithms for 
business can be grouped into two practices: predictive analytics and busi-
ness processes optimization.40 Additionally, different types of existing 
algorithms may be said to either cater to consumers or, more inwards, to 
the business operations.

2.2.1 Predictive Analytics & Business Processes Optimization

Predictive analytics seeks to exploit patterns in past transactions for opti-
mized outcomes for the business. It can “estimate demand, forecast price 
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changes, forecast market shocks, and predict consumer behaviour and pref-
erences to improve management decision making.”41

On the other hand, algorithms may be used for business processes opti-
mization. In that role, algorithms’ automation and computational power 
allow for the processing of large datasets and to react fast—and at a lower 
cost than through labour. Businesses then utilize this ability to reduce pro-
duction and transaction costs or set optimal prices for instance.42

2.2.2 Algorithms Catered Towards Consumers & Algorithms 
Catered Towards Businesses

Banicevic et al offer a list of examples of specific uses of algorithms in a 
business context.43 That list allows to discern two broad uses: algorithms 
catered towards consumers and algorithms catered towards the businesses 
themselves.

The former category regroups algorithms such as: ranking and matching 
algorithms, which recommend a product or match buyer and seller based 
on the consumer’s preferences; cross-merchandizing algorithms promote 
another product to a consumer based on history; personalized pricing algo-
rithms optimize the price of a product according to the consumer’s interests; 
and risk assessment algorithms that analyze a consumer data to assess the 
likelihood of their actions.

The second category englobes the following algorithms: dynamic pricing 
algorithms that automatically adjust selling prices according to competitors’ 
prices and market changes; unilateral pricing algorithms that are made to 
take unilateral pricing steps, relative to competitors’ prices; and financial 
trading algorithms that analyze financial markets to execute transactions. 

2.2.3 The Appeal of Algorithmic Business 

Evidently, algorithmic business has developed because AI has much 
to offer for businesses. The variety of types and uses of algorithms create 
unparalleled opportunities for businesses to optimize their processes and 
revenue. Not only this, but it can also improve consumers’ experiences 
thanks to algorithms catered towards them. 

The OECD underlines how algorithms can have pro-competitive effects, 
both on the supply and demand side.44

On the supply side, algorithms allow to gain efficiencies, which in return 
promote lower production costs. It can also promote the quality of the 
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products and services offered, and the overall consumer experience. The 
OECD also notes that dynamic pricing algorithms have been recognized 
to improve market efficiency, specifically because it enables businesses to 
react instantaneously to changes.45 Algorithms also facilitate “perfect price 
discrimination;” that is, they allow businesses to price directly according to 
consumers’ personal information. While it may raise some actual discrimi-
natory and ethical issues,46 it is also admitted that it improves economic 
efficiency.47

On the demand side, algorithms are poised to help consumers in their 
choices. “Algorithmic consumers” is even used to refer to this shift in who 
bears the weight of decision-making. Algorithms use their “predetermined 
decision tree which assigns weights to decision parameters in order to 
suggest the optimal decision given in a particular set of data and circum-
stances.” 48  This allows for optimized decision-making and reduces search 
and transaction costs for consumers. Additionally, the ease with which 
consumers can compare offerings incentivizes businesses to innovate and 
promote competition.49

3. Too Good to Be True? A Looming Threat that Should Be 
Heeded

In Part 2, this paper presented the numerous advantages that algorithmic 
business offers for the market as a whole. But the picture is tainted. This Part 
will discuss the concerns that the use of pricing algorithms catered towards 
businesses pose. While some argue that these worries are unfounded or pre-
mature, evidence will be examined to balance the debate. 

3.1 Debates on the Anti-Competitive Effects of Pricing 
Algorithms

Authors have raised concerns that the use of algorithms will favour some 
form of collusion and make it harder to detect by regulators. As technology 
evolves, gets refined, and becomes more widely available, “the possibilities 
for both chaos and mischief” are endless.50 

It is feared that algorithms may learn to cooperate autonomously—and 
thus to independently achieve collusive outcomes or to be used to imple-
ment a collusion agreement.51 

Independently, a reinforcement algorithm that is given the goal to maxi-
mize profits may learn that avoiding price wars52 with competitors is the 
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best way to reach that goal.53 Competitors’ algorithms may thus reach col-
lusive price levels, even without communicating with one another. 

One appeal of collusion is that competitors do not compete on price 
points. That way, they are able to charge more for their products and ser-
vices.54 But, following the scenario outlined above, if algorithms learn to not 
engage in price wars with their competitors, these businesses will stop offer-
ing discounted prices.55 Even further, many raise concerns that algorithmic 
pricing tends to reach supra-competitive prices, which refers to prices that 
are above what can be sustained in a competitive market and is usually 
indicative of anti-competitive behaviour.56 While businesses will gain higher 
profits, these will result in higher costs for consumers and less economic 
efficiency.57 

Additionally, algorithms render less important the number of players 
involved, in order to effectively implement collusion. Given the incentive to 
defect or deviate from the agreement, collusions fare better when a smaller 
number of players is involved.58 Algorithms, however, allow for better coor-
dination and monitoring irrespectively of the number of players.59 

These AI tools also reinforce market transparency and the frequency of 
interactions, which are elements that favour collusive behaviour.60 On this 
point, the French and German competition regulators are insightful: 

Even though market transparency as a facilitating factor for collusion has 
been debated for several decades now, it gains new relevance due to techni-
cal developments such as sophisticated computer algorithms. For example, 
by processing all available information and thus monitoring and analyzing 
or anticipating their competitors’ responses to current and future prices, 
competitors may easier be able to find a sustainable supra-competitive price 
equilibrium which they can agree on.61

In response to these concerns, many believe that the assumptions underly-
ing the fears for competition are either not supported by empirical evidence 
or too premature: these are unproven theories—for now.62

The critics argue that while algorithms are increasingly intelligent, real-
world markets are too complex for the experimental designs’ conclusions 
to hold true.63 In the same vein, experimental studies assume unchanging 
market environments, which are variables that have important implications 
for collusion.64 Another critique is that these studies focus on duopolies, 
which is not the case for most markets.65 In fact, the more players there are 
in a market, the more difficult collusion becomes.
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At the same time, critics insist that the type of algorithms capable of auton-
omously cooperating with competitors simply do not yet exist.66 Even more 
so, to achieve collusive consequences, algorithms, it is argued, must learn 
to communicate with each other and to react to these communications.67 

In line with these criticisms, the Canadian Competition Bureau also 
concluded that, at the m, there was no evidence of algorithmic collusion, 
therefore preventing them from issuing guidance on the issue. Yet, it was 
recognized that technology and business practices evolve rapidly—which 
may warrant a change of position in the future.68

3.2 Recent Robust Experimental Studies 

Three experimental studies from 2020 and 2021 come to renew the con-
cerns about the use of algorithmic pricing. 

The first study was conducted by Calvano et al, a group of European 
economists.69 The experimental study demonstrates that algorithms can 
implement autonomous collusion in synthetic environments. The study 
is designed in a repeated oligopolistic competition setting, where firms 
compete with differentiated products.70 In this setting, the businesses 
delegate pricing processes to their Q-learning pricing algorithms, a new 
generation of reinforcement learning algorithms,71 with the given goal to 
maximize the business’s profits.72 Assad et al, who discuss the study find-
ings, summarize the experiment as follows:

In each period, the algorithm observes and thus reacts to prices effec-
tively charged in previous periods by all market participants. After making 
its choice, it observes the resulting profits realized in that period. The idea of 
the experimental approach is to study the behaviour that these AI-powered 
pricing algorithms learn over time by observing them repeatedly interact-
ing in this virtual market.73

The study found that the algorithms consistently learned to collude.74 This 
came first apparent through the finding that businesses in the experiment 
would obtain higher profits.75 Interestingly, when a competing algorithm 
lowers its prices—that is, when it would deviate from the rest—, it is met 
with punishment from the other algorithms until it realigns itself. Such 
“reward” and “forgiveness” patterns are an attribute of collusion.76 The 
algorithms in the study are self-learning and have learned these behaviours 
or strategies through experience. What did they learn here? The lesson was 
“that undercutting the other firm’s prices brings forth a war with low profits 
which ultimately makes any attempt to deviate from the spontaneous cartel 
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price unprofitable.”77 More importantly: these algorithms have not been 
designed to collude, nor do they talk among each other.78

In a related study from 2021, Calvano et al add to the literature by finding 
that, if given enough learning time, Q-learning algorithms are able to learn 
to not compete even in environments with imperfect information, imper-
fect monitoring, and in the absence of communication and instructions.79 
This study presents two variations. In the imperfect information variation, 
the algorithms are informed of their own business’s prices but not of their 
competitors’. In the imperfect monitoring variation, the algorithms cannot 
perfectly observe the prices chosen by competitors due to imperfect signals.80

When a competitor deviates in price or after a demand shock, the algo-
rithms enter into a price war for a brief period after which cooperation picks 
up again.81 A change in the hyperparameters also yields similar outcomes, 
which validates the findings of Calvano et al that collusive outcomes are 
common and not dependent on a select few points.82

In a study similar to the 2021 experiment of Calvano et al, Hansen et al 
also seek to contribute to the literature of algorithmic collusion by iden-
tifying a new mechanism through which supra-competitive pricing can 
occur.83 In their experiment setting, the algorithms do not observe the prices 
of their competitors. Just like Calvano et al, they also find that in such a 
setting, collusion can materialize just as well. Their experiments also reveal 
the importance of having high informational value. When this is present, 
independent algorithms inadvertently correlate their prices, therefore creat-
ing a collusion-like environment in the market.84

These recent economic studies provide essential answers to some of the 
critics discussed above. They show, in an experimental setting, that com-
munication between algorithms is not needed for these AI to reach collusive 
outcomes. They also reveal that novel algorithms may fare better than 
expected in complex environments. 

3.3 Empirical Evidence from the Case of the German Retail 
Gasoline Market

Where experimental evidence of the negative impacts of algorithmic 
pricing is abundant, the same cannot be said for empirical evidence. This 
paper discussed in Part 1 the study by Chen et al, which found a prevalence 
of use of pricing algorithms among top sellers on Amazon, and that 60% of 
the third-party sellers on the platform using algorithmic pricing were charg-
ing more than other sellers.85 Other regulators inquiries found evidence of 
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growing use of pricing algorithms: the European Commission reported that 
two-third of online retailers use pricing tools;86 and the Portuguese com-
petition regulator reported that about 8% of the businesses surveyed used 
them.87

Nonetheless, these do not bring much evidence of concrete threats to 
competition or of collusive behaviours. In 2020, Assad et al bridged the 
gap in the literature by conducting a study of the German retail gasoline 
market.88 This is the first empirical evidence of widespread algorithmic 
adoption raising margins and prices, putting the theoretical and experi-
mental findings to the test.

The authors decided to focus on the German retail gasoline market 
because high-frequency retail gasoline price data is available and because, 
according to publications, this market started to widely adopt the use of 
pricing algorithms in 2017.89 In line with previous studies that use margins 
to evaluate competition,90 this study compares the retail margins of adopt-
ing gasoline stations and of non-adopting gasoline stations. 

The algorithms used in this market, for any given gasoline station, are 
trained with historical data. They then mix in real-time information to these 
inputs in order to set prices that maximize the station’s profits. The ensuing 
transactions are then fed back into the algorithm, to be used as new inputs, 
etc.91 

As the lines get blurred, it is not certain what type of algorithm is being 
used. However, it is inferred that the type of machine learning being used is 
a reinforcement learning algorithm, similar to the one described in Calvano 
et al’s 202092 study.93 It is however noted that regardless of the type of algo-
rithms used in the German retail gasoline market, a widespread use could 
still lead to collusive behaviour.94

The near-perfect transparency of prices in the market studied, in part due 
to price disclosure regulations, make deviations from collusive behaviour 
easily detectable and punishable—thus, favouring an environment that will 
sustain the supra-competitive prices obtained.95 This setting so far coincides 
with experimental designs’ environments and creates a perfect empirical 
study to test the conclusions.

The research finds that the mean margins at the station level increased by 
0.7 euro per litre, after the adoption of pricing algorithms, which represents 
a 9% increase.96 The mean prices rose by 0.5 euro per litre. Extrapolated, 
these findings estimate a €500  million per year increase in consumer 
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expenditures for gasoline, because of price increases since adopting pricing 
algorithms.97 

With regards to the effects on competition, the research results indicate 
that a “market-wide algorithmic-pricing adoption raises margins and prices, 
suggesting that algorithms reduce competition.”98 Even more compellingly, 
the margin increases found here are consistent with estimates of other 
researchers on the effects of coordination in the retail gasoline market.99

Lastly, the research tests two hypotheses: are these outcomes due to the 
algorithms’ inability to learn effective competition? Or are they actively 
learning how not to compete? Just like Calvano et al, they conclude that 
the latter question must be answered in the affirmative. Indeed, there is 
evidence that the margins only start increasing a year into the adoption of 
pricing algorithms in the market, which indicates that the algorithms are 
effectively learning tacit collusive strategies.100

Could the results of this study just prove that there is an ongoing, undis-
covered collusion in the German retail gasoline market? There is no direct 
evidence of such anti-competitive behaviour, neither from the firms pro-
viding the algorithms to that market nor from the gasoline companies.101 
Interestingly, this raises a concern addressed under Part 4.2: with the rise of 
pricing algorithms, it may be easier to hide actual collusive endeavours, as it 
will be prima facie difficult to discern autonomous algorithmic action from 
algorithmic execution of illicit ventures.

What the study does suggest is that the experimental evidence available 
so far has not been far-fetched. It provides solid evidential grounds for the 
concerns raised against the use of algorithmic pricing. A2i systems, one of 
the software companies providing pricing algorithms in the German retail 
gasoline market,102 is a Danish AI company specializing in supplying pricing 
algorithms in the fuel industry.103 They boast that they provide solutions in 
at least twelve countries and have advertised working with six brands, all 
leaders in the industry.104 

This signals that regulators should study more closely this industry. But 
not just that: this study suggests that the concerns raised by academics and 
economists may not be so distant and theoretical after all. 

4. A Canadian Legal Landscape … In Need of Landscaping?

Having established the nature of the problem and the extent to which 
algorithmic pricing may pose problems to markets, are regulators well 
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equipped to respond to the challenge? To answer this question, the various 
legal tools available in Canada will be discussed before applying them to 
three situations in which algorithmic pricing challenges may arise: (i) 
pricing algorithms may be used to execute pre-existing explicit collusion; 
(ii) the use of pricing algorithms from a common intermediary can create 
hub-and-spoke scenarios; and (iii) pricing algorithms can autonomously 
collude. 

4.1 Overview of the Legal Framework

4.1.1 The Criminal Avenue: Sections 45 of the Competition Act

Section  45 of the Competition Act was enacted to address “hardcore” 
cartels.105 The provision focuses on horizontal agreements by prohibiting 
agreements between competitors106 to fix prices, allocate market shares, and 
fix production or supply.107 In 2010, the Competition Act was amended and 
created Section 90.1.108 Since, the Competition Bureau has signalled that 
it means to tackle the “most egregious forms of cartel agreement” under 
Section 45 and address the others under Section 90.1.109 Any agreement that 
relates to a subject not outlined under Subsection 45(1) should be analyzed 
under Section 90.1.110 Additionally, the Competition Act confers a private 
right of action for persons that suffered damages from a breach of the crimi-
nal provisions of the Act, notably of Section 45.111

Under Section 45, there is no need to demonstrate that the object of the 
conspiracy was carried out or that the agreement had any effect on competi-
tion.112 Importantly, however, there must be an actual agreement for there to 
be a conspiracy, which requires “genuine intention” to enter into the agree-
ment and knowledge of the terms of the agreement.113,114 In other words, 
for there to be an agreement, there must be a “meeting of the minds.”115 
While evidence of this agreement must be proven beyond a reasonable 
doubt, it may be inferred from circumstantial evidence.116 In that vein, con-
scious parallelism does not meet the threshold to constitute an agreement 
impugned under Section 45, unless there is evidence of communication in 
that regard.117 Conscious parallelism can be understood as,

[…] pricing that emerges out of an oligopolistic market setting without 
communication or agreement among the sellers. The crux of the theory of 
conscious parallelism is briefly that the oligopolists are interdependent in 
their pricing: they base their pricing decision in part on anticipated reac-
tions to them. Put differently, the oligopolist is behaving in exactly the same 
way as is a rational seller in a competitively structured market; he is simply 
taking into account the reactions of his rivals to any price cut or increase 
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which he has to take into account because of the situation in which he finds 
himself.118

Exceptions and defences may also rebut a charge. Subsection 45(4) estab-
lishes a defence where the impugned agreement is ancillary to and necessary 
for another, lawful agreement.119 Subsection 45(5) provides for a defence 
in cases of products exports,120 and Subsection 45(6) creates an exception 
for agreements among affiliates.121 Finally, Subsection  45(7) adopts the 
common law regulated conduct defence.122

Lastly, to promote uncovering of conspiracies, the Competition Bureau 
has an immunity and leniency program exclusively for persons charged 
under Section 45.123

4.1.2 The Civil Avenue: Section 90.1 of the Competition Act

Introduced above, Section 90.1 is a recent provision of the Competition 
Act that was meant to address the legislative gap between the criminal cartel 
provision (Section  45) and the mergers review provision (Section  92). It 
specifically provides a mechanism for arrangements that are “neither struc-
tural nor egregiously illegal” and aims to punish agreements that result in 
a substantial lessening or prevention of competition (“SLPC”).124 Six ele-
ments must be met for a successful Section 90.1 claim:125 (i) the challenged 
conduct is an arrangement or agreement; (ii) the agreement or arrangement 
is existing or proposed; (iii) there are two or more parties to the agreement 
or arrangement; (iv) the above parties are competitors; (v) the agreement or 
agreement results in an SLPC; (vi) the effects occur or are likely to occur in 
a Canadian market. 

Similar to Section 45, Section  90.1 requires a consensus between the 
parties and does not apply to conscientious parallelism. 126 However, this 
new test is “effects-based.” In that sense, an otherwise reviewable collabora-
tion will be saved under Subsection 90.1(4) if it creates efficiencies.127 Just as 
is allowed in merger reviews,128 an agreement or arrangement is saved if it 
results in efficiency gains that offset its anti-competitive effects.129 

The section may apply to a variety of agreements that are usually con-
sidered to be pro-competitive.130 The Competition Bureau has issued 
guidelines, freshly updated, on its approach to Section 45 and 90.1, and 
especially in their applications in light of other provisions in the act.131

Overall, the tests presented above under the Competition Act underline 
that the regulators are trying to strike the right balance because, as much as 
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joint ventures may hurt competition, these “are often the catalysts of inno-
vation and efficiency.”132 

4.1.3 The Tort Avenue: The Tort of Civil Conspiracy

A tort avenue for conspiracies also exists. For a successful claim under 
the tort of civil conspiracy, (a) two or more persons must have concluded 
an agreement and (b.i) the predominant purpose of the agreement was 
to cause injury to the plaintiff, regardless of the lawfulness of the conduct 
undertaken, or (b.ii) “where the conduct contemplated by the agreement 
[was] unlawful, that conduct [was] directed towards the plaintiff [who 
suffered damages] and the defendants should [have known] in the circum-
stances that damage to the plaintiff [was] likely to result.”133

However, the tort is not well developed, in terms of scope and utility.134 
It is also a private action and not under the competence of competition 
regulators.135 

4.2 Putting the Law to the Test

Canadian competition law is therefore rich in avenues to address issues 
of illicit arrangement between competitors. Let’s now see how these hold, 
considering the issues identified in Part 3.

4.2.1 Competition Law & Pricing Algorithms as Tools to 
Execute Pre-Existing Explicit Collusion

With pricing data being more readily available, the use of pricing algo-
rithms can facilitate explicit coordination. There have already been cases 
before courts on this specific offence. 

The 2015 United States of America v Topkins136 case was the first anti-
trust criminal prosecution involving e-commerce in the United States. The 
defendants were charged with using pricing algorithms to execute a con-
spiracy to fix prices of certain posters sold on Amazon Marketplace.137

In 2016, a similar case was brought forward by the Competition and 
Markets Authority (“CMA”), the United Kingdom regulator for competi-
tion.138 Two competitors selling posters and frames on Amazon had agreed 
to not undercut each other’s prices. Their agreement was executed using 
pricing algorithms that were specifically programmed to implement this 
cartel.139 

Other investigations mirroring these scenarios are currently pending.140  
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These cases reinforce the statement from the Canadian Competition 
Bureau reported in Part 3: in such factual frameworks, the existing analyti-
cal principles are sufficient to address the legal problems.141 Indeed, these 
scenarios all rely on AI to put into effect a previously agreed upon collu-
sive pact. There, AI merely becomes a vector of their collusive intent. A 
Section 45 charge will only worry about the intent of the conspirators, while 
a Section 90.1 claim would add an analysis of the effects to the competition 
environment. 

The only “novelty” that pricing algorithms pose in these instances, is the 
ease with which conspirators may implement their collusion. 

4.2.2 Competition Law & Algorithmic Hub-and-Spoke Scenarios

Another possible scenario arises where competitors (the spokes) use the 
same or a common, third-party algorithm (the hub) in their pricing pro-
cesses,142 creating a like hub-and-spoke environment.143 Such arrangements 
are not necessarily unlawful—but can be.

In 2016, the Court of Justice of the European Union (“CJEU”) addressed 
this scenario.144 E-turas, a Lithuanian online booking system, had sent 
a message to its travel agents users informing them to cap the discount 
rates. The CJEU ultimately ruled that in order to conclude that a collusion 
occurred between the agents, their knowledge was an instrumental factor. 
Despite the caution of the CJEU, it signalled that businesses who indepen-
dently acquire a pricing algorithm, knowing that their competitors use it 
too, may be subjected to a collusion inference and therefore need to exercise 
caution.145

Similarly, in Meyer v Kalanick,146 an ingenious argument was brought 
forth. It was alleged that Uber facilitated a hub-and-spoke-structured col-
lusion, whereby Uber conspired with the drivers—whom Uber has always 
argued are independent contractors—147to use the company’s pricing algo-
rithm to set the prices charged to the users.148 Albeit structurally complex, 
it would be interesting to see if the argument of Meyer v Kalanick is raised 
again in another jurisdiction or with other parties.149

These instances reveal the dynamics that a pricing algorithm may create, 
which competition regulators and courts may—or rather, will—have to 
grapple with. 
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A2i systems, discussed in Part 3.3, sketches out this hub-and-spoke struc-
ture, whereby A2i systems’ software is the hub supplying its clients, the 
spokes, with a common pricing algorithm.

In Canada, the updated Competitor Collaboration guidelines (“Guide-
lines”) open the door for such structures to be addressed under Section 45.150 
The Guidelines offer the example of a hub-and-spoke conspiracy, specifi-
cally with a price-fixing agreement. In this structure, the Bureau notes that 
there would be a “meeting of the minds” especially if “spoke A” agrees to 
implement a certain price policy if “spoke B” does it too. 

Applying this logic to the context of the hub being a pricing algorithm, 
how would it work? The E-turas case is insightful: the CJEU stresses the 
importance of the spokes’ knowledge of the concerted practice.151 Therefore, 
it could be argued that a business resorting to a common pricing algorithm 
with a third party, undertakes the responsibility of possibly being involved 
in collusion. Indeed, that algorithm will apply the same logical rules to all 
the spokes involved, therefore attaining concerted prices to all businesses 
involved. As long as businesses are aware of this possible outcome, the 
“meetings of the mind” should be inferred. Drawing upon the doctrine of 
willful blindness, it could be said that, in these circumstances, an intent to 
enter into an agreement can be inferred from the adoption of these pricing 
algorithms. The Supreme Court of Canada states that willful blindness can 
impute knowledge to people “whose suspicion is aroused to the point where 
[they should have inquired further] but deliberately [chose] not to.”152 The 
goal of this doctrine is to signal that self-imposed ignorance should not be 
rewarded. The same logic should be extended in this context. 

This ultimately leads to conclude that, in all aspects, Canadian competi-
tion law seems equipped to handle such situations. The lack of jurisprudence 
on these hub-and-spoke scenarios—even more so scenarios where the 
hub is an algorithm—could either open the door to courts and regulators 
to address them under existing legislation or could let them shy of taking 
this jurisprudential leap. Going back to the A2i systems example, competi-
tors using such a common algorithm supplier may face more risks without 
proper due diligence, should regulators take that leap.

4.2.3 Competition Law & Pricing Algorithms Autonomously 
Colluding

As it has been discussed, especially through the studies by Calvano et al,153 
it is possible for pricing algorithms to autonomously learn to collude.154 In 
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those scenarios, no command to do so is given to the algorithm: so how can 
there be collusion legally?

Sections 45 and 90.1155 both require an intent, a “meeting of the minds” 
to form an agreement or arrangement.156 Evidently, it cannot be said that 
those elements exist in the context of autonomous, independently colluding 
algorithms. 

As the law stands, there would not seem to be any legal sanctions. 

In that regard, it could be argued that businesses that implement these 
pricing algorithms as part of their processes, knowingly assume the anti-
competitive effects, namely the reaching of supra-competitive prices. 
Undoubtedly, these same points that raise concerns in the literature and to 
regulators are the same points that draw these businesses to adopt the AI 
tools. Similar to the point raised in Part 4.2.2, the doctrine of willful blind-
ness may inspire the legal analysis to be undertaken here. At the same time, 
Subsection 45(3) allows to infer the existence of a conspiracy from circum-
stantial evidence or facilitating practices. These practices can be viewed 
as indicators of the existence of an agreement among competitors.157 The 
Competition Bureau even notes that algorithms may extend the arrays of 
activities that constitute facilitating practices.158 This is a great avenue to 
explore a solution, but with a caveat: this still presupposes that underneath, 
there is an agreement.

Ultimately, on the one hand, competition law seems to stress that it cares 
a lot about the effects that behaviours will have on competition. This can 
be seen with the addition of Section  90.1 in 2010.159 This provision not 
only includes an SLPC analysis under Subsection 90.1(1) but also creates 
an efficiency defence under Subsection 90.1(4), thus reinforcing the under-
standing that effects are the key. On the other hand, there is a wariness by 
the regulators to be overzealous as they recognize that collaboration can 
be—and is—good for competition.160 Wariness is even more so warranted 
as sanctioning intent-less collusion would amount to condemn conscious 
parallelism. 

And yet, unfettered pricing algorithms can be harmful for competition 
and consumers, given the anti-competitive outcomes that they can reach.161 
Regulators must then strike the right balance between rectifying and pre-
venting anti-competitive effects, and not unduly punishing businesses. 
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5. Conclusion: The Path Forward

There is a clearly identified and pressing novel challenge that is dawning 
upon competition regulators. Pricing algorithms have proven to make a 
mark and to be attractive to businesses even more. 

For years now, academics and economists have nudged regulators to 
warn them of potential issues. Many experimental studies reveal the core 
of the problem: what makes AI and pricing algorithms so attractive is also 
their downfall. They allow for real-time price adjustments: this allows for 
real-time monitoring for deviations from the collusive agreement. They 
also allow for better profits for their users: studies show these better profits 
do not necessarily reflect market prices. Ultimately, a growing number of 
studies reach similar conclusions: smart algorithms without being taught 
nor instructed to, end up reaching a collusive outcome. 

These reinforcement learning algorithms are self-taught. Their program-
mers give them wings, and they fly to their destinations, their pre-assigned 
goals, on their own. Maybe this should prompt us to think philosophically 
about collusion: what makes it so that all, including AI, mere lines of binary 
codes, have this tendency? A Plato or Descartes may say that it is nature that 
makes these tendencies so inevitable.162 Or, maybe the answer will be found 
in John Locke’s postulate: our ideas are not innate; our mind is a tabula 
rasa, a blank sheet that gets filled as we experience.163 Maybe the experience 
that drives this tendency is the clearly stated and present goal of profits for 
businesses and AI alike. 

Echoing Locke’s theory, the most appropriate answers to go forward may 
lie in understanding the controllable elements that affect the algorithms’ 
reasoning. Indeed, considering how algorithms process their experiences 
and the inputs they are allowed to take into consideration, allow to point 
rather into the direction of regulating algorithms themselves. Maybe 
certain properties of pricing algorithms should be prohibited;164 changing 
the design to reward algorithms that cut process for instances,165 or making 
software designers liable for their algorithms’ designs are all paths forward 
to address algorithmic collusion more efficiently.166

The legal path, however, is delicate. The current legal principles can hold 
the fort for now. Yet, there are circumstances where the legal avenues get 
murkier. While we should be cautious of developing legal principles too 
broad that may result in impeding competition, we should also be cautious 
of not creating legal blind spots where colluders may hide, shielded from 
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liability. This paper has proposed to creatively read-in intent to bypass the 
lack of actual agreement for instance. 

Absent legislative reforms, only time and the bringing forth of the first 
algorithmic collusive case to courts will be able to confirm the robustness 
and adequacy of Canadian laws for these challenges.
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